

Thermal Testing Short Course Types of Thermal Testing

Glenn Tsuyuki

Jet Propulsion Laboratory

California Institute of Technology

August 21, 2003

There Are Three General Categories

Thermal Test Short Course

DEVELOPMENTAL TESTING

- To characterize parameters that are difficult to quantify analytically
- To characterize design performance/behavior

- Thermal environment is known
- Temperature is a dependent parameter

ASSEMBLY PROTOFLIGHT/ QUALIFICATION OR FLIGHT ACCEPTANCE

- To demonstrate inspecification hardware performance beyond allowable flight temperature range
- To uncover design or workmanship defects
- Temperature is an independent parameter; specified a priori along with dwell times, ramp rate, & number of cycles

SYSTEM- OR ASSEMBLY-LEVEL THERMAL BALANCE

- To validate a thermal design
- Empirical validation is the goal
- To demonstrate functionality at expected temperatures
- Thermal environment is known
- Temperature is a dependent parameter

Thermal Development Testing

- Used to assist design development, especially for situations that are difficult to characterize analytically & are key thermal design drivers
 - Insulation performance, especially MLI blankets
 - Interface contact conductance
 - Bearing conductance
- Used to expand thermal design space beyond a "single point"
 - Investigate if a design approach is feasible ("proof-of-concept")
 - Determine design sensitivity to key thermal parameters
- This type of testing aims to reduce design deficiency risk
- Typically, non-flight hardware used for test article
 - You must understand your needs for the fidelity of the test article (thermal control model or thermal mock-up)

MER Propellant Line Thermal Blanket Development Test

- Objective
 - To characterize effective emittance for a series of blanket geometries
 - Straight
 - · Tee
 - · Elbow
- Results were imported into analytical model for heater sizing
 - Thermal balance for a propellant line zone is on the order of a few tenths of Watts

APEX Camera & Electronics Thermal Development Test

Thermal Test Short Course

Objectives

- To determine amount of Mars nighttime survival heater power for the camera
- To determine amount of camera warm-up heater power
- To determine camera thermal response to transient changes in atmospheric & effective sky temperatures
- To determine effectiveness of electronics thermal insulation
 - Novel approach that uses stagnant in-situ Mars atmosphere
- To characterize electronics heat loses through insulation, mounting, and cabling

Results

- Adopted novel insulation approach as baseline
- Verified survival & warm-up heater camera power
- Correlated analytical model to transient test data

Assembly Protoflight/Qualification OR Flight Acceptance Testing

- Used to demonstrate assembly workmanship and design reliability
 - Sometimes referred as "margin testing"
- Test temperature levels, dwell times, temperature ramp rates, and number of thermal cycles are dictated by institutional or project policies
- Traditional test program is QUAL/FA or PF
 - EM hardware subjected to QUAL testing
 - FLT hardware subjected to FA testing
 - OR FLT hardware subjected to PF testing

Mars'01 Lander Heat Pipe Flight Acceptance Test

Thermal Test Short Course

- Objectives
 - Validate flight units function in reflux mode in-air
 - Validate capability to transfer 1 watt under various tilt angles

_

- Quantify thermal gradients along heat pipe
- Compare pre-start-up thermal gradients to analytical predictions
- Results demonstrated that flight units would transfer sufficient heat during cruise to Mars
 - Hardware accepted for flight

MER Integrated Pump Assembly Thermal Protoflight Testing

Thermal Test Short Course

Objective

- Demonstrate in-specification performance (pump ∆P & flow rate) over temperature ranges greater than allowable flight temperature (AFT) limits
- Operating AFT limits
 - -20°C to +30°C
- Operating Protoflight (PF) limits
 - -35°C to +50°C
- Dwell durations
 - Cumulative 24 hours cold
 - Cumulative 50 hours hot
- Number of thermal cycles
 - 3 times lifetime requirement
 - · 3 test cycles
- Test results met objectives
 - Hardware accepted for flight

System- OR Assembly-Level Thermal Balance Testing

- Used for thermal design validation and hardware functionality in expected thermal environment
 - "Validation" versus "Verification"
 - First discovery of a design deficiency is very costly (budget & schedule) to rectify at this point
 - Hardware functionality includes thermal items such as heaters, thermostats, temperature sensors, heat pipes/CPLs, & pumps
- Two basic approaches
 - Empirical
 - Bounding worst-case thermal environments
 - Combination of test & analysis
 - Specified hot & cold thermal environment to obtain data for analytical model correlation
 - Analytical model utilized to demonstrate design requirement compliance

GALEX Instrument Thermal Balance Testing

Thermal Test Short Course

Objectives

- Validate instrument thermal design for worst-hot & -cold Earth orbit conditions
- Validate survival (primary & secondary) heater string operation
- Validate optical performance

Design validation was empirical

- Test results met objectives
 - Design maintained allowable flight temperatures for extreme environmental cases
 - Primary & secondary survival heater strings validated

MER Cruise Thermal Balance Testing

Thermal Test Short Course

Objectives

- Validate thermal design for mission worst-hot & -cold conditions
 - Solar simulation used
 - IR lamps used for off-sunpoint simulation
- Validate mechanical pump fluid loop operation
- Validate primary & secondary thermostatic heater strings
- Design validation was empirical
 - Test objectives met
 - Uncovered swapped primary & backup thermostats on four assemblies
 - Determined –Z sun sensor did not require silverized Teflon tape

MER Mars Surface Thermal Balance Testing

Thermal Test Short Course

Objectives

- To perform representative steady-state & transient cases to gather empirical data for analytical model correltation
 - Simulation of Mars surface environment extremely challenging (e.g., diurnal solar heating, wind simulation, 3/8 gravity field, CO₂ atmosphere)
- To validate critical deployments
 & releases at cold temperature
- To perform science instrument calibration at various temperatures
- Design validation used a combination of test & analyses

Results

- Test data confirmed development test results that WEB thermal design is robust
- Provided empirical data for actuator heater warm-up validation
- Demonstrated critical deployments & science calibrations